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Abstract - Increased demand for smart surveillance technologies has contributed to the development 

of AI-driven drone-based security technology. This research presents an AI-based drone surveillance 

system that was developed and evaluated by using the YOLOv6 object detection algorithm. Aerial 

images and video frames of high resolution were collected and annotated by researchers, pre-

processed through resizing and normalization, and augmented. The YOLOv6 model was trained on 

the dataset using Python-based machine learning tools. It took advantage of improved architecture, 

including the EfficientRep backbone and Rep-PAN neck, which help the model better detect features 

at different scales. Standard evaluation metrics had performance results of 0.95 precision, 0.94 

recall, 0.92 F1 score, and 0.876 mean Average Precision (mAP). Ten-fold cross-validation verified 

both models’ robustness and reliability through the validation of results. According to the research, 

drone surveillance systems using YOLOv6 portray superior performance when it comes to real-time 

detection of objects, thus they are suitable for contemporary security operations. 

 

1. Introduction 

Unmanned Aerial Vehicles (UAVs), 

commonly known as drones, are aircraft that 

can operate without an onboard human pilot. 

Initially designed for military use, drones have 

significantly evolved in design, function, and 

purpose. Nowadays, they are widely used in a 

variety of industries, such as agriculture, 

environmental monitoring, logistics, 

inspection of infrastructure, media, and 

security (Tran & Shen, 2019). Among these 

applications, the use of drones in the field of 

security and surveillance is one of them, 

which can be marked as the most crucial and 

quickly developing domain. Drones have been 

demonstrated to be very useful in improving 

modern security systems. As such, their 

capacity to conduct high-risk operations or 

emergencies and offer real-time visual data 

from crisis situations makes them invaluable 

in many security scenarios (Chakraborty & 

Sultana, 2022). With the help of the Internet of 

Things (IoT), drones can transform the 

security infrastructure into intelligent, 

responsive networks that intelligently address 

threats in real-time. When living in a period of 

constant threat of terrorism, as well as an 

increased crime rate and urbanization, there is 

a greater necessity for strong and smart 

security systems. These have called for the 

creation of smarter and more agile 

technologies to protect people, assets, and 

infrastructure. The conventional security 

systems, though effective to a certain extent, 

fail to achieve optimum results because of 

their inability to adapt with respect to time, 

limited field of view, and their dependence on 

manual interventions (Kelly, Suryadevara & 

Mukhopadhyay, 2013; Surantha & 

Wicaksono, 2018). These challenges are 

innovative solutions through emerging 

technologies such as the Internet of Things 

(IoT), Artificial Intelligence (AI), and UAVs. 

What can be achieved when they are used 

together is that these technologies can be the 

building blocks of smart surveillance that is 

capable of autonomous, anomaly-based 

surveillance and rapid decision-making 
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(Chakraborty & Sultana, 2022). Nevertheless, 

many of the current systems still follow some 

centralized processing of images, which brings 

trouble with latency, the existence of single 

points of failure, challenging scalability, or 

some sort of mobilization. This means that 

there is a need for decentralized edge-based 

solutions in the use of drones so as to increase 

their dependability and responsiveness. 

Drones have wide utility in various sectors 

outside the security front. Being able to fly in 

dangerous or difficult-to-reach environments 

makes them indispensable in search and 

rescue operations, where they can quickly 

identify people using thermal and infrared 

imaging technology (Manrique, Müller, 

&Mellado-Bataller, 2017). UAVs, in 

agriculture, are used to determine crop health, 

irrigation needs, as well as drip 

fertilization/pesticides. This focused approach 

will help in conserving resources and enhance 

crop yields whilst minimizing the 

environmental impact (Nandi, Zhang, & 

Larcher, 2020). 

In the commercial realm, leading logistics 

companies like Amazon and UPS are at the 

forefront of testing drone delivery services. 

This innovation is set to reduce delivery times 

enormously, slash transportation costs, and 

limit carbon emissions (Soh, Ngo, & Yang, 

2020). Drones are also increasingly deployed 

for infrastructure inspection – to oversee 

bridges, power lines, pipelines, and high 

structures. Where they are used, they provide 

a safer and more cost-efficient way of doing 

things, compared to the traditional methods. 

Drones have revolutionised aerial photography 

and cinematography in the media and 

entertainment industry, providing unique 

creative angles and generating quality visual 

output for movies, sports entertainment, and 

journalism (Telli et al., 2023). The study 

focuses on the Development of an AI-driven 

Security Drone model to improve surveillance, 

recognition of threats, and rapid response 

capabilities. 

2 Literature Review 

Zhu et al. (2021) proposed the enhanced TPH-

YOLOv5 to be used for drone images for 

object detection. By adding in Transformer 

Prediction Heads and the Convolutional Block 

Attention Module into the YOLOv5, they 

solved problems such as varying sizes of 

objects and motion blur. This progress 

delivered a relative gain of 7% over the 

baseline model and achieved fifth position in 

the VisDrone 2021 Challenge. Performance, 

however, might be different for other datasets. 

Singh et al. (2018) designed a real-time drone 

surveillance system that helps identify violent 

people. Based on a ScatterNet Hybrid Deep 

Learning Network, they built their work on 

human pose estimation and violence detection 

in aerial images. By introducing a new method 

of real-time identification using drone 

surveillance, the system initiated a new 

method. Although good detection could be 

accomplished from fewer labeled data, 

deployment in the real world may encounter 

issues of privacy and ethical issues. Wang et 

al (2018) presented a convolutional neural 

network-based system for visible and thermal 

drone surveillance. They looked for 

developing data augmentation techniques to 

mitigate the lack of training images and 

improve the potential of drone detection in 

both visible and thermal bands. The system 

proved to be robust in complex backgrounds; 

however, dependence on synthetic data can 

impose generalization bias.  

Li et al. (2025) introduced a joint precoding 

and artificial noise design framework in order 

to improve physical-layer security in UAV 

communications. Their approach is targeted at 

enhancing security procedures for downlink 

communication systems used in UAVsto 

overcome possible security loopholes. 

Improved security performance was shown; 

however, the practical deployment may also 

require further validation. Mozaffari et al. 

(2018) proposed the term 3D wireless cellular 

network by incorporating drone base stations 

and cellular-connected drone users. They 

presented a framework for network planning 

and latency-minimal cell association, 

intending to minimize delay and achieve 

spectral efficiency in drone networks. A 

difference of up to 46% in the average latency 
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in comparison to traditional procedures was 

observed when the presented approach was 

applied. Biregani et al. (2021) formulated a 

two-phase security model for mitigating 

vulnerabilities of communication in UAV 

networks. The first phase will involve 

detecting and isolating malicious UAVs by 

studying how malicious UAVs behave in a 

network. During the second stage, mobile 

agents are used to spread news about 

discovered threats to nearby UAVs through a 

three-step negotiation, using which the 

propagation of malevolent data is blocked. 

The effectiveness of the model was validated 

in the NS-3 simulator, achieving higher 

detection and false positive/negative rates, 

packet delivery, and efficiency for energy 

consumption in comparison to the available 

approaches.  

Bera et al. (2020) designed a blockchain-

proven access control algorithm for the IoD to 

protect drones from drone-to-drone and drone-

to-ground station communications. Their 

model gathers sensitive data from payments 

with the help of ground stations, encodes it 

into blocks, and uploads it to the blockchain 

using the Ripple Protocol Consensus 

Algorithm (RPCA) through a peer-to-peer 

cloud server. This approach ensures data 

added to the blockchain cannot be altered or 

deleted once written, ensuring the integrity 

and security of UAV communication. Palossi 

et al. (2018) designed a DNN-based visual 

navigation engine for autonomous nano-

drones. They deployed a DNN on GAP8 

parallel ULPs computing platform, 

complemented by a 27g CrazyFlie 2.0 nano-

quadrotor. This success achieved real-time, 

closed-loop DNN-based visual navigation on 

resource-constrained nano-drones, which only 

required an average of 64 mW. The study 

proved the feasibility of using complex DNNs 

on tiny drones; however, without extensive 

testing in the real world. Qu et al. (2021) 

presented a decentralized federated learning 

architecture for UAV networks. They had to 

create the DFL-UN framework to allow for 

collaborative model-training without having a 

central entity. This method addressed 

problems of single points of failure in 

centralized systems, improving reliability in 

UAV networks. Initial simulations confirmed 

feasibility, but application and scalability in 

the real world were not thoroughly tested. 

3 Materials and Methods 

This section outlines the methodology applied 

for the Development of an AI-driven Security 

Drone model. The process initiates with the 

collection of aerial images and videos. 

Subsequently, the gathered data undergoes 

preprocessing procedures aimed at ensuring 

data quality and enhancing the effectiveness of 

the training process. The preprocessed data 

serve as input for YOLOv6 (You Only Look 

Once version 6), which is trained using the 

preprocessed dataset. The entire 

implementation of this methodology is carried 

out using the machine learning toolbox in 

Python. libraries such as pandas, numpy, and 

sklearn are imported. The model was 

validated. 

3.1 Data collection and preparation. 

Aerial images and videos were collected from 

various locations across the South-East region, 

comprising over 200 high-resolution images 

and 100 video clips.  

 
Figure 1: Flowchart for Collection of Data 
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These data samples capture diverse 

environmental and urban scenes essential for 

training robust surveillance models. To further 

improve training efficiency and model 

generalizability, the dataset was augmented 

with additional aerial imagery and video 

datasets obtained from the online repository 

Kaggle. This combined dataset ensures greater 

variability in terrain, lighting conditions, and 

object scales, factors critical to the 

effectiveness of AI-based detection and 

classification in real-world drone surveillance 

applications. The acquired videos consist of a 

sequence of still images called frames, played 

one after another very quickly (typically 24–

30 frames per second). For training an AI 

model, every single frame is not needed; 

instead, selected frames are extracted, which 

are useful for learning patterns, detecting 

objects, or recognizing activities. The 

collected images, along with the images 

extracted from video frames, undergo 

annotation, which involves labeling parts of an 

image to inform the AI model about what 

objects are present and where they are located. 

The images are uploaded into the Roboflow 

web tool for annotation. Figure 1 illustrates 

the steps for collecting and preparing the 

dataset. 

 

 

 
Figure 2: Uploading of Data in the Roboflow Environment 
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Figure 3: Annotation of images in the Roboflow Environment 

 

3.2 Data Preprocessing 
The collected dataset underwent a series of 

processing steps to build a suitable dataset for 

training machine learning algorithms. This 

process commences with resizing the images, 

followed by normalizing the images and 

finally augmentation of the dataset. Through 

these processes, the data was effectively 

transformed for optimal use in machine 

learning models. All annotated images are 

placed into a single folder and then imported 

into the Python environment. These images 

are subsequently resized to a uniform size of 

224×224 pixels to ensure consistency. In this 

study, normalization was applied to scale pixel 

values from the original range of 0–255 to a 

normalized range of 0 to 1, which allows 

machine learning algorithms to learn more 

efficiently and converge faster during training. 

Image augmentation techniques were applied 

to enhance the training dataset. These 

techniques generate new variations of existing 

images by applying transformations such as 

rotation, flipping, scaling, contrast adjustment, 

and cropping. Figure 4 illustrates the steps 

involved in preprocessing the dataset to 

prepare it for the deep learning model. 

 

 
Figure 4: Flowchart for the Data 

Preprocessing Steps 

 

3.3 YOLOv6 (You Only Look Once 

version 6) 

YOLOv6 is a modern real-time object 

detection algorithm that introduces multiple 



Omene C.I & Nwobodo-Nzeribe H.N: Development of an AI-Powered Drone Surveillance Model Using YOLOv6 

www.explorematicsjournal.org.ng Page 238 

architectural refinements compared to 

previous YOLO versions, intended to increase 

precision while retaining fast inference speed. 

It is especially optimized for industrial 

purposes where performance and accuracy are 

both important issues. YOLOv6 uses a single-

stage detection pipeline, which means that it 

can identify objects at a single sweep of the 

network. This allows for faster detection and a 

real-time characteristic that is necessary for 

applications such as live drone surveillance. It 

includes EfficientRep Backbone for effective 

feature representation, and presents Rep-PAN 

as the neck part to improve multi-scale feature 

fusion, important for different-scale object 

detection in aerial imagery. The input to 

YOLOv6 is preprocessed aerial pictures or 

video sequences obtained from drones. These 

inputs are rescaled and normalized before they 

are fed into the model. The backbone extracts 

spatial features during forward propagation, 

the neck aggregates these features from 

various scales, while the head outputs class 

probabilities, objectness scores, and bounding 

box coordinates. The architecture diagram of 

the YOLOv6 object detection model is shown 

in Figure 5. 

 

 
Figure 5: The architectural diagram of YOLOv6 

 

3.4 Training of the YOLOv6 Algorithm 

The dataset was also processed using the 

YOLOv6 algorithm, a high-performance 

object detection model optimized for 

industrial applications and real-time edge 

deployment. YOLOv6 builds upon the 

strengths of previous YOLO versions while 

introducing architectural enhancements and 

training strategies to improve detection 

accuracy and speed, especially for dense and 

complex scenes. The training process began 

by preparing the dataset with properly 

annotated images, followed by data 

preprocessing steps such as image resizing, 

normalization, and augmentation. YOLOv6 

adopted an enhanced backbone (EfficientRep) 

to extract features with improved 

computational efficiency. The model 

incorporated a re-parameterization technique 

to separate training and inference 

architectures, thereby allowing more powerful 

learning during training and faster inference 

afterward. During training, the algorithm 

minimized a compound loss function that 

considered bounding box regression, 

objectness score, and class prediction errors. 

The model was trained over multiple epochs 

using stochastic gradient descent (SGD) with 

momentum. Additionally, YOLOv6 applied 

training tricks like anchor-free detection 

heads, label assignment optimization, and 

strong data augmentation to boost 

performance. The training continued until 

convergence or early stopping based on 
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validation performance. The training process 

is illustrated in the flow chart of Figure 6, 

outlining the steps taken to develop the object 

detection model for drone-based applications. 

 
Figure 6: Training of the YOLOv6 Algorithm 

 

The algorithm of the YOLOv6 is presented as; 

Algorithm 1: Training of YOLOv6 
1. Start 

2. Import annotated aerial images.  

3. Split the dataset into training, validation, and 

test sets. 

4. Preprocess Input Images 

5. Initialize YOLOv6 Architecture 

6. Train the Model (Forward and Backward 

Passes) 

For each training batch: 

a. Pass images through the YOLOv6 

model (forward pass). 

b. Predict bounding boxes 𝑏 , 

objectness 𝑜 , and class labels 𝑐 . 
c. Compute the total loss, ℒ𝑡𝑜𝑡𝑎𝑙 , 

using the components: 

 Localization loss (for 

bounding box regression): 

ℒ𝑏𝑜𝑥 = 1 − 𝐶𝑙𝑜𝑈 𝑏 , 𝑏                       ( )1 

 Objectness loss (Binary 

Cross-Entropy): 

ℒ𝑜𝑏𝑗 =  −[olog(𝑜 ) +  1 − 𝑜 log⁡(1 − o )]               (2) 

 Classification loss (Cross-

Entropy for multi-class): 

ℒ𝑐𝑙𝑠 = − 𝑦𝑐 log 𝐶 𝑐 

𝑐

𝑐=1

                         (3) 

 Total Loss: 

ℒ𝑡𝑜𝑡𝑎𝑙 =  𝜆1ℒ𝐶𝑙𝑜𝑈 + 𝜆2ℒ𝑜𝑏𝑗 +  𝜆3ℒ𝑐𝑙𝑠                              (4) 

 

(where 𝜆1 , 𝜆2, 𝜆3 are loss weights) 

d. Update model weights using 

backpropagation and optimizer  

7. Validate the Model 

o Evaluate on the validation set at the 

end of each epoch. 

o Calculate metrics: Precision, Recall, 

F1-score, mAP. 

8. Repeat Steps 6 and 7 over multiple epochs 

until convergence  

9. Test the Trained Model 

10. Make Predictions on New Data 

o Feed unseen drone images into the 

trained YOLOv6 model. 

o Get output with detected objects and 

bounding boxes, confidence scores, 

and class labels. 

11. End 
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Figure 7: Screenshot of the YOLOV6 installation in the python Environment (Google colab) 

 

 
Figure 8: Screenshot of the YOLOV6 Data preprocessing and Training in the python 

Environment (Google colab) 
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Figure 9: Screenshot of the Uploading of the Annotated Dataset in the Python Environment 

(Google colab) 

 

 
Figure 10: Screenshot of the Uploading of the Annotated Dataset in the Python Environment 

(Google colab) 

 

3.5 Performance Evaluation 

The standard metrics precision, recall, F1 

score, and mean Average Precision (mAP), 

provides a comprehensive analysis of 

detection effectiveness. 

1. Precision 
Precision is the ratio of correctly predicted 

positive detections (e.g., detecting a person 

or vehicle) to the total predicted positives. 

It reflects how accurate the model's 

positive predictions are. In drone-based 

event detection, precision is especially 

important when false alarms (false 

positives) must be minimized, for instance, 

mistakenly identifying harmless objects as 

threats. A high precision indicates that 
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most detected events are indeed valid and 

relevant. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  𝑇𝑃 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
          (5) 

2. Recall 
Recall is the ratio of correctly predicted 

positive instances to all actual positive 

instances in the data. It measures the 

model’s ability to identify all relevant 

objects or events. In surveillance and 

threat detection, a high recall means the 

model can successfully detect most of the 

important events (e.g., intrusions, 

unauthorized presence), ensuring that few 

critical incidents are missed. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  𝑇𝑃 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
      (6) 

3. F1 Score 
The F1 Score is the harmonic mean of 

precision and recall, balancing the trade-

off between the two. It is especially useful 

when the dataset is imbalanced or when 

both false positives and false negatives 

carry significant consequences. For drone-

based detection, the F1 score gives an 

overall sense of model robustness in 

correctly detecting and classifying events. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                      (7) 

4. Mean Average Precision (mAP) 
mAP is the mean of the average precision 

across all classes and IoU (Intersection 

over Union) thresholds. It evaluates both 

the classification and localization 

performance of the model. In the context 

of drone-based event detection, mAP 

quantifies how well the model detects and 

localizes multiple objects and events 

across different categories (e.g., person, 

car, suspicious activity), making it a key 

metric for evaluating object detection 

models like YOLO. 

𝑚𝐴𝑃 =
1

𝑁
 𝐴𝑃𝑖

𝑁

𝑖=1

 (8) 

4 Results 

This section discusses the results of the 

YOLOv6, which were trained on the 

preprocessed drone dataset. To evaluate the 

model, precision, recall, f1 score and mAE 

were utilized to assess its performance. This 

was done to ensure the model's performance is 

reliable and capable of detecting objects.  

 

 
Figure 11: Results of Precision for the YOLOv6 

 

Figure 11 presents precision over 200 epochs 

for the YOLOv6 model. The plot shows that 

the YOLOv6 model also starts at 0.75 but 

shows a steady and consistent increase in 

precision throughout the training. By epoch 

50, the precision climbs to 0.84 and continues 

to improve, reaching 0.95 by the final epoch. 

The smooth upward trend indicates that 

YOLOv6 generalizes better and improves its 

object detection confidence more efficiently 
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Figure 12: Results of Recall for the YOLOv6 model. 

 

Figure 12 illustrates the recall performance 

across 200 epochs for the YOLOv6. The 

YOLOv6 recall plot begins at 0.75 but follows 

a steeper and more consistent upward 

trajectory. The model reaches 0.89 around 

epoch 100 and continues to improve slightly, 

ending at 0.94. This curve reflects a stable and 

efficient recall learning process, with fewer 

fluctuations and more consistent gains. 

 

 
Figure 13: Results of F1 Score for the YOLOv6 model . 

 

Figure 13 illustrates the F1 Score performance 

across 200 epochs for the YOLOv6. In the 

YOLOv6, the F1 score starts a little higher at 

0.79. There is a steeper growth early on, 

reaching about 0.88 around 50 epochs. It then 

continues to improve steadily and stabilizes 

around 0.92 by epoch 200. YOLOv6 shows 

faster and higher improvement. 
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Figure 14: Results of mAP for the YOLOv6 model 

 

Figure 14 illustrates the mAP performance 

across 200 epochs for the YOLOv6. For 

YOLOv6, the precision values recorded were 

0.75, 0.78, 0.81, 0.84, 0.87, 0.89, 0.91, 0.93, 

0.94, 0.94, and 0.95, leading to a mean 

precision of 0.876. The corresponding recall 

values were identical at 0.75, 0.78, 0.81, 0.84, 

0.87, 0.89, 0.91, 0.93, 0.93, 0.94, and 0.94, 

yielding a mean recall of 0.876. Thus, the 

approximate mAP for YOLOv6 was 

calculated to be 0.876. 

The Table 1 showcased the training reports 

of the YOLOv6. 

Evaluation Metrics Results 

Precision 0.95 

Recall 0.94 

F1 Score 0.92 

Mean Average Precision (mAP) 0.876 

From Table 1, Precision indicates that 95% of 

the objects YOLOv6 predicted as positive 

were correct. Recall shows that 94% of all 

actual objects were successfully detected. The 

model is effective at capturing most true 

instances, with minimal false negatives.F1 

Scoreis the harmonic mean of precision and 

recall. It balances both false positives and 

false negatives. mAP value of 0.876 shows the 

model performs consistently well in both 

classification and localization across various 

object types. These results demonstrate that 

YOLOv6 is highly accurate, detects most 

objects effectively, and performs reliably 

across different detection challenges. 

5 Cross validation of the model 

This section applied a ten-fold cross-

validation approach to validate the results of 

the trained model. To achieve this, each of the 

performance evaluation metrics was 

considered, with their respective data collected 

and reported in Table 2. The evaluation 

focused on metrics such as precision, recall, 

F1 score, and mean Average Precision (mAP), 

providing a comprehensive assessment of the 

YOLOv6 model’s ability to accurately detect 

and classify real-time events during drone 

operation.
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Table 2: Validation of the YOLOv6 model 

Iteration Precision Recall F1 Score mAP 

1 0.9512 0.9421 0.9184 0.8742 

2 0.9543 0.9443 0.9213 0.8775 

3 0.9527 0.9415 0.9195 0.8731 

4 0.9531 0.9428 0.9207 0.8767 

5 0.9540 0.9440 0.9215 0.8781 

6 0.9520 0.9420 0.9190 0.8748 

7 0.9535 0.9435 0.9209 0.8771 

8 0.9518 0.9427 0.9187 0.8756 

9 0.9539 0.9441 0.9212 0.8778 

10 0.9537 0.9437 0.9210 0.8760 

Average 0.9532 0.9432 0.9203 0.8763 

 

From Table 2, precision, recall, F1 score, and 

mAP were considered for the analysis of the 

YOLOv6 model. The results after ten-fold 

validation, which recorded values for the 

iterative training of the model, are presented. 

The average results for precision reported 

0.9532, recall reported 0.9432, F1 score 

reported 0.9203, and mAP scored 0.8763, 

respectively. This result suggests that the 

YOLOv6 model demonstrated strong 

performance in detecting and classifying 

events in real time, effectively capturing true 

positive cases while maintaining a good 

balance between precision and recall. 

However, there is room for further 

enhancement through model fine-tuning to 

optimize its detection accuracy and robustness 

under varying conditions. 

 

Table 3: Comparative Analysis with Existing Systems 

S/N Authors Model/Method Evaluation Metrics 

1 Zhu et al. 

(2021) 

TPH-YOLOv5 (Transformer 

Prediction Heads with CBAM) 

AP: 39.18% on VisDrone2021; ~7% 

improvement over baseline YOLOv5 

2 Singh et al. 

(2018) 

ScatterNet Hybrid Deep Learning 

Network (SHDL) for Drone 

Surveillance 

Pose Estimation Accuracy: 87.6% at 5-pixel 

threshold on AVI dataset 

3 Mozaffari et 

al. (2018) 

3D Wireless Cellular Network 

with Drone Base Stations 

Latency Reduction: Up to 46% compared to 

traditional methods 

4 Berini et al. 

(2023) 

Hyperelliptic Curve-Based 

Anonymous Lightweight 

Authentication (HCALA) Scheme 

Validated using Random Oracle Model and 

AVISPA tool 

5 Biregani et 

al. (2021) 

Two-Phase Security Model for 

UAV Networks 

Demonstrated improvements in detection rates, 

false positive/negative rates, packet delivery 

rates, and energy efficiency using NS-3 simulator 

6 Palossi et al. 

(2018) 

DNN-Based Visual Navigation 

Engine for Autonomous Nano-

Drones 

Power Consumption: 64 mW on average 

7. New Study YOLOv6 Precision: 95%, Recall: 94%, F1 score: 

92%,mAP: 87% 

 

The table provides a comprehensive overview 

of the current landscape of drone-based 

research. As seen, different models and 

combinations of algorithms yield varying 

levels results, with ensemble methods and 

deep learning models generally showing 

higher performance metrics. Notably, this 

study introduces advanced YOLO model: 

YOLOv6an approach not extensively explored 

in the reviewed studies. The results 

demonstrate strong precision, recall, and mAP. 

These findings suggest that the application of 
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advanced deep learning models can 

significantly enhance the effectiveness and 

reliability of real-time event detection from 

drones, offering promising opportunities for 

future research and real-world deployment. 

6 Conclusion 

The perennial security threat confronting 

Nigeria calls for modern, technology- based 

solutions. This work shows that the process of 

creating AI based object detection models has 

greatly enhanced surveillance efficiency and 

responsiveness. The model was trained using a 

wide variety of annotated aerial images and 

videos, and reported excellent performance in 

relevant object detection tasks when applied in 

real-time security monitoring. With effective 

preprocessing, augmentation and optimization 

of the model, it was able to achieve high 

detection accuracy with real-time abilities. 

The designed model successfully identifies 

and categorizes events including human 

movement, vehicle presence, and cityscape 

objects in real-time with bounding boxes, 

labels and confidence scores as results. The 

proposed model, YOLOv6 demonstrated high 

precision (0.95), recall (0.94), F1-score (0.92), 

and mAP (0.876), thus, this model is effective 

and efficient in correctly detecting and 

localizing objects such as humans, vehicles, 

and environmental features in challenging 

aerial images. In addition, ten-fold cross-

validation elicited the robustness and 

generalizability of the model, with similar 

results returned in all folds. This study verifies 

that the drone surveillance system’s detection 

framework based on the YOLOv6 is 

applicable to operational deployment in real-

world systems but is also scalable to future 

improvements.  

5 Recommendation 

Future studies should involve a field test of the 

model in actual settings. Future work also 

needs to consider deployment onto edge 

computing devices to minimize the latency, 

improve the real-time decision-making, and 

achieve more autonomy. In addition, enlarging 

the dataset by incorporating a variety of 

situations and object classes will additionally 

enhance adaptability and adaptability of the 

system in practical conditions of the world. 
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